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Notation

Vectors and tensors are bold sans-serif characters (e.g., x, v). Operators are in calli-
graphic font (e.g., £, O). Integers representing cardinality of a particular set are cap-
italized using a “typewriter” font type (e.g., N, M). Standard non-capitalized, non-bold
symbols represent simple scalars or scalar variables (e.g., a, b).

1. Motivation

The goal of the Event Reconstruction Project (Sugiyama et al., 2004) is to find the
location and strength of atmospheric release points, both stationary and moving. Source
inversion relies on observational data as input. The methodology is sufficiently general
to allow various forms of data. In this report, we will focus on primarily on concentration
measurements obtained at point monitoring locations at various times.

The algorithms being investigated in the Project are the MCMC (Markov Chain
Monte Carlo), SMC (Sequential Monte Carlo) Methods, classical inversion methods,
and hybrids of these. We refer the reader to the report by Johannesson et al. (2004) for
explanations of these methods. These methods require computing the concentrations
at all monitoring locations for a given “proposed” source characteristic (locations and
strength history). It is anticipated that the largest portion of the CPU time will take
place performing this computation. MCMC and SMC will require this computation to
be done at least tens of thousands of times. Therefore, an efficient means of computing
forward model predictions is important to making the inversion practical.

In this report we show how Green’s functions and reciprocal Green’s functions can
significantly accelerate forward model computations. First, instead of computing a
plume for each possible source strength history, we can compute plumes from unit
impulse sources only. By using linear superposition, we can obtain the response for any
strength history. This response is given by the forward Green’s function.

Second, we may use the law of reciprocity. Suppose that we require the concentration
at a single monitoring point x,, due to a potential (unit impulse) source that is located
at x;. Instead of computing a plume with source location x5, we compute a “reciprocal
plume” whose (unit impulse) source is at the monitoring locations x,,. The reciprocal
plume is computed using a reversed-direction wind field. The wind field and transport
coefficients must also be appropriately time-reversed (see following sections for actual
details). Reciprocity says that the concentration of reciprocal plume at x; is related
to the desired concentration at x,,. Since there are many less monitoring points than
potential source locations, the number of forward model computations is drastically
reduced.

A separate important benefit of using Green’s functions is that they allow us to
succinctly characterize the linear dependence between the concentration field and the



source strength field. This characterization allows us to exploit classical closed-form
methods available for linear systems under gaussian statistical assumptions. These
methods can yield highly appropriate proposal distributions for significantly speeding-
up Monte Carlo algorithms for solving non-gaussian statistical problems. This approach
is also likely to make the CPU costs of the Monte Carlo algorithm more predictable than
purely Monte Carlo methods which have the possiblity to be highly unpredictable. This
advantage is very important for “on-line” applications.

A good reference for Green’s functions and the adjoint problem is Morse and Fes-
chbach (1953), who derive the adjoint Green’s function for the diffusion equation.

2. Source Inversion Problem for the Advective-Diffusion Equation

2.1. Mathematical Preliminaries

Instead of restricting ourselves to point sources, we will consider general source fields
s(x, t).

Consider the concentration field in a domain 2 due to a release from s(x,t). The
concentration is assumed to be a solution to the following partial differential equation
for advective and dispersive transport with decay:

Oc(x, t)
ot

for x € Q, ¢t > 0. Note that, in general, the dispersion tensor k and the decay constant
A may depend locally on the wind velocity field v = v(x,t). We have used the notation
k(x,t,v) as a short-hand for k(x, t,v(x,t)), and A(x, t,v) as a short-hand for A(x, ¢, v(x,t)).
We require that k(x,,v) be a symmetric tensor that is positive definite, and A(x,,v)
be a non-negative scalar field.

The wind field v = v(x, t) is assumed to be “incompressible”:

+ A(x, t,v)e(x,t) + V- [e(x, t)v(x, )] — V - k(x,t,v)Ve(x, t) = s(x,t), (2.1)

V-v(x,t) =0. (2.2)

(It will be seen later that the above incompressibility assumption allows the “recip-
rocal problem” to be solved from a time-reversed version of the “forward problem”.
Otherwise, an additional source term is required in addition to the time-reversal.)

The source field s(x,t) is assumed to satisfy the condition:

/_o:o /Q s(x, )2 dxdt < oo. (2.3)

This condition rules out, among other things, sources that have infinite spatial extent
and sources that have finite extent, but do not die off sufficiently fast enough in time.
This condition is clearly satisfied for spatially finite sources that go to zero for ¢t > T.



The solution to the above partial differential equation is assumed to satisfy an initial
condition of zero concentration:

c(x,t) =0, x€N, t<0, (2.4)
and zero boundary condition on the boundary 02 of Q:
c(x,t) =0, xe, t>0. (2.5)

For convenience, we may wish to take the outer boundary of the problem to be suffi-
ciently far enough away that the concentrations at the boundary are negligible by the
time the plume reaches there. Or, we may wish to extend our domain to infinity so that
Q becomes the entire three-dimensional space R3.

We will restrict our solutions that have finite square integrals:

/_ o:o /Q c(x,t)? dxdt < oo, (2.6)

and finite square integrals of their gradients:

/O:O/Q |Ve(x, )|? dxdt < oo. (2.7)

From the zero concentration boundary condition, the condition on the source term,
and the diffusive nature of the partial differential equation, it can be shown that the
solution c(x,t) satisfies

. 2 _
tl_l)I& . c(x,t)”dx = 0. (2.8)
That is, the mean-square concentration over the entire domain approaches zero as time
goes to infinity.
2.2. The Advection-Dispersion Operator and Its Adjoint

We define the advection-dispersion operator, which we call £, by

L[(x,t)] = W + A(X,t,V)P(x,t) + V - [p(x, t)v(x,t)] — V - k(x,t,v)V(x,t). (2.9)

The resulting short-hand for (2.1) is
Lle(x,t)] = s(x,t). (2.10)

The operator £ will be defined not only over functions ¢ that are concentration
solutions ¢(x,t), but for any function ¢ that satisfies conditions (2.5) through (2.8).
That is, ¢ must satisfy the following:

b(x,t) =0, x€Q, Vi, (2.11)



/oo /Q $(x, 8)? dxdt < oo, /oo /Q IV (x, £)|? dxdt < oo, (2.12)
. 2 _
tl_l)rgo/ﬂqﬁ(x,t) dx = 0. (2.13)

The “space-time inner product” between two functions ¢ and v is defined by
[e.e]
< yip >= / / b(x, ) (x, 1) dxdL. (2.14)
—00 JQ

Now, given a linear operator © we define its adjoint operator as the operator O! such
that

< O, p >=< ¢, Olap >, (2.15)

where both ¢ and 9 satisfy (2.11) through (2.13).
In Appendix A, it is shown that the adjoint operator £! for the advection-dispersion
operator L is given by

0p(x,t)
ot
Note that £! is defined only for functions ¢ satisfying (2.11) through (2.13).

An important note is that the adjoint operator £! defined by (2.16) is of the same
general form as the advection-dispersion operator £ defined in (2.9) if we reverse time
in all of the terms and reverse the wind field direction in the advective term. More
details on this aspect will be given later.

LYp(x,1)] = FAX, t,v)P(x,t) = V- [p(x, t)v(x,t)] =V -k(x,t,v)Vo(x,1). (2.16)

2.3. The Green’s Function for the Advection-Dispersion Equation

The Green’s function gy (x,t) is a solution to (2.1) in the special case where the source
field is a unit impulse of mass located at x’, occurring in a single “instant” of time ¢'.
That is, for the source function we write s(x,t) = dyy(x,t), where the delta-“function”
Oy (X, t) is formally defined by

/_ 0; /Q S (%, )b, £) dxedt = G(x', 1), (2.17)

for all integrable functions ¢. An equivalent representation is dyy (x,t) = §(x—x')d(t—1t').
Substituting s(x,t) = dyy (x,t) into (2.1), we have that for ¢ > ¢’ the Green’s function
satisfies the equation:

Llgwe (x,t)] = dxrpr (%, 1). (2.18)

For t < t' we require the initial condition:

gy (x,1) = 0, x € Q. (2.19)



The following boundary condition is also required:
[/ Y (X, t) =0, x € 09, Vt. (220)

The solution ¢(x,t) to (2.1) for a general source field s(x,t) can be obtained by
superimposing the solutions (i.e., the Green’s function) for unit impulses at various
times, to yield:

oo
e(x, 1) = /_ ) /Q G (%, £)s(x', ) dx'dt’. (2.21)

To derive this equation, just multiply both sides of (2.18) by s(x/,t') and, then, integrate
with respect to x' and #'. Note that the initial and boundary condition for the solution
from (2.21) automatically follow from those placed upon g,y (x,t).

2.4. Reciprocal or Adjoint Green’s Function

We have defined the (forward) Green’s function g.y(x,t) as the solution to the equa-
tion (2.17). We now define the reciprocal or adjoint Green’s function hyr(x,t) as the
function, for ¢ < ", satisfies

,Ct[hxutu (X, t)] = Ox!1¢! (X, t), (222)

and, for ¢t > ¢,
hyrryn (x,t) = 0. (2.23)

Here, L! is the adjoint operator of £, as defined by (2.16).

From our previous observations made regarding the adjoint operator, the reciprocal
Green’s function h,»y is the backward evolution of a concentration field due to a source
at location x” occurring at time t” with time-reversed and direction reversed wind field
(with proper time-reversal of A and k that will described later).

2.5. Law of Reciprocity for Green’s Functions

It can be shown (see Appendix B) that the following “reciprocity law” holds:
ax't (X”, t”) = hxlltll (XI, t,) (224)

The importance of this law for source inversion is the following: in order to determine
the concentrations gy (X", ") at, say, a monitoring point, x” for a multitude of potential
source locations x’, we can instead solve for the concentration field Ay (x',t') at x" due
to a source at the monitoring location x”. Since the number of monitoring locations is
relatively small, it is much easier to compute Ay (X',t') than gep (X7, t").

In order to compute hyr (X', 1) we need to solve (2.22). As we mentioned before,
by reversing time, this equation is an advection-dispersion equation so that it can be



solved using existing advection-dispersion computer codes with minor modifications, if
any.

That reciprocity works for a purely advective system is not surprising because trans-
port due to an incompressible flow field is clearly time-reversible. That is, symmetry
(invariance) exists under time-reversal. For a combined advective-dispersive system,
reciprocity is actually symmetry under time-reversal plus the interchange between source
locations. From a purely physical point of view, this symmetry is not obvious. It turns
out that reciprocity works because the dispersion term in the transport equation is self-
adjoint. Self-adjointness is required (de Groot and Mazur, 1984) in order that the time
rate of entropy for a closed system be non-negative. For statisticians, an equivalent
statement is that the information content of a closed system can not increase.

2.5.1. Reciprocity for Steady Wind Field and Transport Parameters

Suppose that the wind field velocity and the transport parameters(i.e., decay constant
A and dispersion coefficient k) are constant in time:

v, 1) =v(x), Al v(61) = Axv(x)), kXt v(x, 1) = k(x,v(x)).  (2.25)
As shown in Appendix C, the above conditions imply the following.

e The Green’s function g,y (x,t) depends only the time difference ¢ — ¢’ so that we
may write gy (x,t — t') instead, or, simply, as gy (x,t)

e The same holds for the reciprocal Green’s function hyry(x,t); we may write it as
hyir (x,t — "), or, simply, as hyr(x,t).

e Note that these Green’s functions no longer depend on the time, ¢’ or ¢, of the
respective source terms. Thus, we may choose a single time, say t = 0, for the
source term. Only a single Green’s function need be computed, instead of one for
each source term time.

Suppose that in addition to the conditions (2.25) we have that the transport param-
eters do not dependent on the sign of the wind field:

A, v(x) = A(x, —v(x)),  kix,v(x)) = k(x, —v(x)). (2.26)

Then, a reciprocity law holds that is somewhat stronger than (2.24). In Appendix C
we prove that
gx! (X”’ t) = §X” (X,7 t)a (227)

where g has the same definition as the Green’s function g with the only difference being
that the wind field direction is reversed (i.e., v = —v).



The identity (2.27) can be interpreted as the following: the concentration c;(t) at
x"" due to a unit impulse source at x = x', t = 0, carried by a wind field v is equal to the
concentration cy(t) at the point x' due to a unit impulse source at x = x”, ¢ = 0, carried
by the reverse wind field —v.

2.5.2. Reciprocity for Time-Varying Wind Field and Transport Parameters

Now we consider the case where the wind field v and the transport parameters A and
k depend on time. We show how the reciprocal Green’s function hyr(x,t) can be
computed using an existing computer code that solves advection-dispersion transport
problems.

From (2.16) and (2.22), we see that the reciprocal Green’s function solves the equa-
tion:

_ 8h’x”t” (X, t)

5 T AV (68) = V- e (x, v (x, 2]

-V k(X, t, V)thutu (X, t) = Oyt (X, t) . (228)

We will use the variable 7 to denote time that is reversed, starting from the release

time ¢" of the unit pulse source:
T=t"—1. (2.29)

In this reversed time, we have that 7 = 0 corresponds to the release time ¢ = t”. We
define the reversed wind field as a reversal in time and direction:

Vi (%, 7) = —v(x,t" — 7). (2.30)

The reversed transport parameters are defined as the time reversal of the original pa-
rameters:

Ao (%, 7,v) = Ax, " — 1,v(x,t" = 7)), Kin(x,7,v) = k(x,t" —71,v(x,t" —7)). (2.31)

Note that, here, the wind velocity is not reversed.
The reverse reciprocal Green’s function will be defined as simply the time-reversal
of the reciprocal Green’s function:

h;utu (X, T) = hx”t” (X, t” - T). (232)
Then, (2.28) becomes, for 7 > 0,

ah;//tu (X, T)

87' + A;” (X, 7', V)h;/tn (X, ’T) + V . [h:l(lltll (X, T)Vr (X, T)]

=V K (%, 7, V) VRl (x, 7) = 8(x — x")d(7), (2.33)



and (2.23) becomes, for 7 <0,
h;’;//tu (X, ’7') = 0. (234)

These equations imply that the reversed reciprocal Green’s function hl,,.(x,7) is the
concentration field due to an unit impulse source at 7 = 0 with wind field that is
reversed in direction and time, and the transport parameters A and k are reversed in
time only. Hence, hl.,.(x,7) may be computed using an existing advection-dispersion
transport code with the proper changes in the wind field and transport parameters. Once
hlmm (x,7) is computed, from (2.32) we may compute the reciprocal Green’s function by

hx”t” (X, '[,') = h)c”t” (X, t” - t) (235)

In terms of the reversed reciprocal Green’s function, the law of reciprocity (2.24)
becomes
ax' (X”,t”) = Qutu (Xl,t” - tl) (236)

In terms of the source inversion problem, this identity may be interpreted as the follow-
ing. To find the concentration g,y (Xm,trn) at a monitoring location at x = x,,, t = t,
due to a unit impulse source at x = x', t = t/, one can equivalently solve the reverse
problem (in the sense described above) for the concentration b} , (X',t, —t') at x =X/,
t = t,, — t' due to a unit impulse source at x = x,,, t = 0.

2.6. Example and Verification of Reciprocity

We counsider solving the one-dimensional advection-dispersion equation with a source at
x = xs. The concentration ¢(z,t) solves

oc(z, t) dc(z,t) 0 oc(z,t)
ot v Oz sz(x) ox

The initial concentration is zero: ¢(z,0) = 0.

To verify reciprocity we will compare two solutions: the first solution ¢ (z,t) is due
to a source at z; = 0, and the second solution cy(z,t) is due to a source at s = L,
where L > 0. In computing the second solution cp(z,t) we change the wind direction
so that the velocity v is replaced by —wv.

If reciprocity is true, then the concentration history c¢;1(L,t) should be the same as
the concentration history c2(0, ).

The velocity v is constant and uniform. The dispersion coefficient k(z) is linear in

=d(z—z,), z€R. (2.37)

k(z) = (%) ke + (#) ko, T € R, (2.38)

such that k(0) = k, and k(L) = k;. The Peclet number (Pe = vL/k) for k, = 1.0 is
equal to 10.0, which implies that advection strongly dominates over dispersion in the
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domain around z = 0. The Peclet number corresponding to k; = 10.0 is 1.0 which
means that dispersion and advection are about equal in their effect around z = L.

To find the approximate solutions c;(z,t) and co(z,t), we use the particle method
as implemented by an ensemble of N particles that executes a random walk:

dk
Tntl = Tn + [v + a(wn)] At + \/2k(zp)nn, (2.39)

where 7),, are independent samples from the gaussian distribution with zero mean and
variance At. At initial time, ¢ = 0, the particles begin at the source location, z = z;
(which is z; = 0 for the solution of ¢; and s = L for the solution of cg).

Table 2.1 shows the parameter values used in the simulations. The time step At size
was chosen as

At =02min {Az/v, (A2)?/kmaz } > Kmaa = max(ko, k). (2.40)

Figure 2.1 shows the concentration histories of the forward and reversed simulations,
c1(z = L,t) and co(z = 0,t), using 100,000 particles. There is good agreement between
the two concentrations. Figure 2.2 shows the same concentration histories using a
million particles. The agreement between the two concentrations becomes even closer,
demonstrating the convergence of the particle algorithm to the same solution.

Figure 2.3 shows the concentration histories, except that the dk/dz term in (2.39)
was removed in the algorithm. For this simulation, 100,000 particles were used. It
can be shown from the theory of the Fokker-Planck equation (Reif, 1965; van Kampen,
1981) that without the dk/dz term the concentration c(z,t) does not solve (2.37), but
instead solves

dc(z,t) n Oc(z,t) 6_2
ot Y o 0z?

[k(z)c(z,t)] = 6(x — ), =z € R (2.41)

Since the dispersion term in this equation is not self-adjoint, the adjoint equation is no
longer of the same form as the original equation with reversed wind direction. Thus,
the two concentration histories ¢; and c2 are not equal, as seen in Fig. 2.3. The dk/dz
term is important in (2.39) when the magnitude of dk/dz becomes significant compared
to the wind velocity.

3. Reciprocity for Atmospheric Transport Models with Memory

Lagrangian advection-dispersion transport models, such as that implemented in the
LODI code used at NARAC, have dispersion that depends on the cumulative time from
when each material packet is released at a source. The solutions to such models do not
satisfy an advection-dispersion equation. However, the solutions can be mathematically
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Parameter | Value
v 1.0

L 10.0
ko 1.0

k1 10.0
Az 0.01

Table 2.1. Parameter Values Used in Particle Simulation
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0 2 a 6 s 10 12 1 16
time

Figure 2.1. Concentration at * = L for forward problem with source at x = 0 vs.

concentration at z = 0 for the reverse problem with source at z = L. 100,000 particles

were used.
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0.04

0.03

concentration
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0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

time

Figure 2.2. Same as Fig. 2.1 except that 1 million particles were used.
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0.05

0.04
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0 b I I I I I I I
0 2 4 6 8 10 12 14 16

time

Figure 2.3. Same as Fig. 2.1 except that the dk/dz term in the random walk algorithm
was neglected in both runs. 100,000 particles were used.
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expressed as a superposition of point-source solutions each of whom satisfy a separate
advection-dispersion equations that are parameterized with respect to the release time.

Each point source solution is a Green’s function to an advection-dispersion equation
for a specific release time. The reciprocal (adjoint) problem to LODI can still be formu-
lated because the solution can be still written as a superposition of reciprocal (adjoint)
Green’s functions, using the law of reciprocity, for each specific release time.

When using the reciprocal Green’s function approach for computing time-averaged
concentrations, one has to be careful in computing time-averaged Green’s functions from
time-averaged point sources (i.e., square-wave). The time interval of averaging should
not be larger than the time scale over which the dispersion coefficient varies. It may,
perhaps, be better to first solve the problem for an instantaneous point source and then
average the Green’s function.

3.1. Reciprocal LODI Solutions

In general, we will consider releases from some time-varying source distribution s(x, ).
As a special case, we shall also consider to a single point source located at a point x’
with piecewise-constant s(), (j = 1,2,...), source strength history.

The mathematical model solved by LODI belongs to a class of Lagrangian advection-
dispersion models that transport packets of material with an effective dispersion coefli-
cient k(x, t,t—1') that depends on the travel time ¢t —¢' from when a packet was released.
The solutions c(x, t) to such models do not solve an advection-dispersion equation of the
form:

dc(x, )
ot

However, as shown in Appendix D, the solution can still be expressed in the form:

+ V- [v(x,t)e(x,t)] — V - k(x,t)Ve(x, t) = s(x, t). (3.1)

t
c(x,t) =/0 /ngftr(x,t)s(x',t') dx'dt', (3.2)

where 2 stands for the spatial problem domain. For a piecewise-constant point source,
a special case of (3.2) is

(o t) = D g (xt)s(ty) At} (3.3)

7, tg. <t

Each “basis function” gy (x,t) is the concentration due to an instantaneous release at
x', t' and solves an Eulerian advection-dispersion equation:

agx’t’ (Xa t)

ot +V- [gx’t’ (Xa t)V(X7 t)] -V k(Xa it — t,)v.gx’t’ (Xa t) = 5(t - tl)d(x - XI)7 t> tla

(3.4)
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where we note the presence of ¢ — ' in the argument of k, which distinguishes this
equation from (3.1).

Note that g,y (x, t) is actually the Green’s function of an advection-dispersion equa-
tion. But, the concentration c(x,t) will not, in general, solve an advection-dispersion
equation because the equation solved by each Green’s function has a distinct release
time #'.

We can define an reciprocal, or adjoint, Green’s function, hyryy(x,t) so that the
concentration may be re-expressed as

t
c(x, 1) = / / o (<, #)5(<, ') dX'd". (3.5)
0 Jo
For a piecewise-constant point sources, this expression reduces to

c(x,t) = Z hxtt;, (X', t5)s(t) At} (3.6)

j,t;. <t
Here, hyrymy (x,t) solves the PDE:

_ th”t”t’ (X, t)

ot -V- [V(X, t)hxutﬂtl (X, t)] -V k(X, t,t— t’)VhXHth/ (X, t)

=6(t—t"o(x—x"), ¢ <t<t". (3.7

Note that hAyry(x,t) solves the adjoint to the problem in (3.4). Therefore, from the
law of reciprocity, one has:

hxlltlltl (XI, tl) = gx'¢ (X", t”), (38)

which, together with (3.2), implies (3.5).
We can also define the reverse reciprocal Green’s function as

h’i”t”t’ (X, T) = hxlltl/tl (X, t” — T), (39)
where
r=t"—t. (3.10)
It solves the equation

T
%ﬁ_(x’ﬂ + V . [h')T(-"t”t’ (X, T)V(X, t” — 7')]

=V k(x,t" — 7, t" — 1 — )ALy (x,7) = 8(1)d(x — X"),
0<r<t"-t. (3.11)
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The law of reciprocity implies
ax'¢ (X”, t”) = h’)T(.”t”t’ (X,, t” — tl), (312)

which can be used to express the concentrations in terms of A":

t
c(x, 1) = / / BT (X 8" — #)s(<, ¢') dx'dt’. (3.13)
0 /o
For a piecewise-constant point sources, this expression reduces to
=Y P (X (X, " — t5)s(t;) At (3.14)
7s t’ <t

3.2. Computing Time-Averaged Reciprocal Green’s Functions

The measurement of a concentration is usually the average over some time interval, say
of length T

c(x,t) = — c(x, t') dt'. (3.15)

From (3.2), we have
e(x, 1) = / / Gy (%, £) (<, ) dX'd. (3.16)

where the time-averaged Green’s function is defined by

t+3T - -
Gur (1) = /t o g D) di (3.17)
2

In order to compute G,y (x,t), one may be tempted to solve (3.4), except with a time-
averaged unit point source:

t+1 T 3
s(x,t) = d(x—x) T ir " dt
Io(x—x), t—iT<t<t+1iT
_ T ) 2 249
N { 0, otherwise. (3.18)

From examining (3.4), it is seen that the resulting solution is not equal to Gy (x, 1)
even if the velocity is constant in time, due to the dependence on ¢ — #' by k. It will,
however, be approximately equal to Gy (x,t) if v and k vary slowly over the relevant
time intervals of length 7. It may be possible that this condition is not as severe if,
instead, we solve (3.4) and then compute the average according to (3.17).

Of course, the discussion in this section also applies to the computation of the
reciprocal Green’s function A and the reverse reciprocal Green’s function h'.



16

4. Reciprocal Solutions to “Puff Models”

A “puff model” solves the atmospheric transport of material in an approximate manner
by treating the plume as a linear superposition of “puff functions” released at certain
time interfvals from a source. These functions are typically gaussians with means trans-
lated by the velocity field and whose variance increases with time due to dispersive
mixing. The concentration field computed by puff models, doe not, in general, satisfy
the advection diffusion partial differential equation. However, in some cases, each puff
function satisfies such an equation or approximately satisfies it.

In this section we show how to implement reciprocity for the puff model in the well-
known code INPUFF (Petersen et al., 1984). Instead of an adjoint Green’s function, we
define a related concept, the “adjoint, or reciprocal, puff function”. We show that for
INPUFF, this function can be computed using the code as a “black-box” (i.e., without
any modification to it), as long as the wind field does not vary significantly over a length
scale on the order of the maximum puff width. No other assumptions are required. The
black-box approach requires a backward traverse to compute the puff path trajectory,
followed by a forward traverse to compute the dispersive standard deviation o.

4.1. Adjoint Puff-Function

The concentration ¢(z,y, z,t) computed from a puff model is a superposition of time-
shifted “puff-functions”:

c(z,y,2,t) = Z Izsyszsts,j (.9, 7, t)s(tS,j)Atj’ (4.1)
J

where ¢, ; is the time of the j-th packet release (with t,; < t) and (zs,ys, 2s) is the
coordinate of the (point) source location. Suppose that we measure concentration at a
monitoring point (Zy,, Ym, 2m) so that we have

c(Tms Yms Zm, 1) = Zgzsyszsts,j (Tm, Yms Zm, t)s(tS,j)Atj' (4.2)
J
We would like to find adjoint functions hg,,y,, ..+ such that
hxmymzmt(ms; Ys, 25, ts) = Gzsyszsts (xma Ym> Zm, t)- (4-3)
Then, we would have
C(:I?m, Ym> Zms t) = Z hwmymzmt(x& Ysy, 25, ts,j)s(ts,j)Atj- (4-4)
J

In this way, we would only need to compute the function hs,,y,,2.¢(, ¥, 2,ts), once for
each t, instead of having to compute gz,y,z,t, (Tm,Ym,2m,t) for each potential source
location (zs,ys, zs). We will call the function h the “adjoint puff-function”.
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4.2. INPUFF Puff-Function

Suppose that a puff leaves the point source (xs,ys, 25) at time ¢, and is located at the
point (zp(t), yp(t), zp(t)) at time ¢. In INPUFF, the puff-function is of the form:

9rsyszsts ('Ta Y, z, t) =
2

1 1 (%2~ xp|t 1 (Y~ yp‘t
———————exp|—= exp |—=
(27)3/202 taz|t 2 oy 2 or

t

2 2

1 [z+=% 1[z—%
exp |—= p‘t +exp |—= p‘t . (4.5)
2 2|, 2 |,

The vertical puff position is given by the “plume rise” formulation (call to subroutine
PLUMRS) which has the functional form:

Zp‘t = Zp(ks(t),ws(xp’ypat)aT(t)aHs)a (4.6)
Eks(t) (KS) stability class (from met. data records),
ws = ws(t) (WSPD)wind speed (from met. data records),
ws = Ws(Tp,Yp,t) (GRIDU, GRIDV) wind speed on a grid (from user met. file),
T(t) (TEMP) temperature (from met. data records),
H, (HPP) vertical height of release point (read from input,

not the same as zp(t5)).

The horizontal puff velocity vector (u,,vp) is given by
Up(Tp, Yp, 2p, 1) = U (@, Y, 1) - a(2p, ks(t)), (4.7)

Vp(Tp, Yp, 2p, t) = Vu (T, Y, 1) - a2p, ks(2)), (4.8)
with the wind velocity given by

Uy (T, Y, t) = ws(t) cos Oy (t)m/180, Vo (T, y,t) = ws(t) sin O, (t)7 /180, (4.9)
where w,(t) (WSPD) and 6,,(¢) (WDIR) are from the met. data records. Another option is

Uy (.’E, Y, t) = Ws (.’L', Y, t) CoS 0w(:c, Y, t)7r/1807 IU’UJ(:L‘a Y, t) = ws(:c, Y, t) sin 0111('7"’ Y, t)7T/180,

(4.10)
with wy(z,y,t) and 6,,(z,y,t) from the user met. file (GRIDU and GRIDV). Here, oz, ks(t))
(USCAL) is a plume height-dependent factor. The path of the puff on the horizontal z-y
plane obeys the ordinary differential equations:

dzy

dy
dt = up(Tp, Yp, 2p P

t), dat = Vp(Tp, Yp, 2p

t), (4.11)

t’ t’
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with initial conditions:

Zp —t, = x4, yp‘t:ts = ys- (4.12)

The formulation for computing ¢, and o, (called SY and SZ; computed in subroutine
PROCES) can be set to one of two possible functional forms denpending on a flag (KEYDSP)
specified by the user. The first form is based on the time travelled ¢t — ¢; by the puff:

= o, (t — ts, ks(t), \p(2z, 9, 1)), (4.13)

g,
Tl

=0, (t — ts, ks(t), \w(z,y, 1), Hniz(t)). (4.14)

oz,
The second is based on the distance travelled by the puff from the source:

Or

= 0n(s] ks (1), Ao, 9,1)), (4.15)

0z, = 0,(8|  ks(t), Aw(z,y, 1), Hpiz (1)) (4.16)

t’

The travel distance S‘t is computed by integrating the differential equation:

ds
— ]2 2 —
i up|t + ), S‘t:ts =0. (4.17)

Ao (T,9,1) = uw(z,y,t)00(t), Aw (T, Y, 1) = vu(T,y,t) 0w (1), (4.18)

where o,(t) and o,(t) are standard deviations of uncertainty in the wind (read from
the met. data records). [Note: There appears to be an error in the code in the above
computation when velocities are read from a met. file. Subroutine PROCESS uses the
variables SV and SW for A\, and )\, which are computed in CMPRIS based on the met.
record wind velocity, but they should instead be computed from the met. file wind
velocity.] The quantity H,iz(t) is the thickness of the “mixed depth layer” (HL).

When az|t > 0.8 Hpiz (t), equation (4.5) is replaced with

Here,

Grsyszsts (J;a Y, z, t) =

1 1 (%~ Tp 1 (Y~ Y
—————exp |3 J exp [~ . . (4.19)
2no? thm(t) o or

t
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4.3. Computing the Adjoint, or Reciprocal, Puff-Function

We now consider the adjoint, or reciprocal, puff function for INPUFF. Actually, we
shall not exhibit the adjoint puff function directly but we shall show how to computed
it indirectly using the code as a “black-box”.

First, we observe that the following assumption (Assumption A.) must hold for the
INPUFF puff model to be physically correct: the spatial variation in the wind velocity
vector is small over length scales equal to the maximum width of the puff:

Vi (F1, ) — vay(ra, t)| - t < o (), (4.20)

for
|r1 - r2| < n(gr)maaca (4.21)

where 7 is sufficiently large enough that the error in computing the puff-function is
small compared to the smallest meaningful magnitude in concentration for the problem.
Here, v,, is the wind field velocity vector.

We make the following observations regarding the INPUFF puff function:

Observation 1. The computation of z, v, 2, is independent of o, and o,.

Observation 2. The puff height z, is purely a function of ¢, z,, y,. Therefore, the
differential equation (4.11) is of the form:

dz,

dzp dyp
dt

i fy(@p, Yp, t)- (4.22)

= fm(mpa Yp t)a
Observation 3. If we reverse the wind field and integrate backwards in time from
t = t,, to t = t,, starting at the monitoring point M (see Fig. 4.1), we end up at

a point S* which is approximately the same distance as from M to the true puff
position P. This observation follows from Assumption A, above.

From these observations, one can compute gz, y, ¢, (%, Y, 2,t) at Tm, Ym, 2m, tm using the
following steps:

Step 1. One reverses the wind field and shifts it in time so that ¢ = ¢,;, becomes ¢ = 0.
One then calls INPUFF with the source located at point M (see Fig. 4.1). A
single puff is released at time ¢ = 0. The stopping time is at t = t,,, — t;. The puff
coordinate position (point S* in Fig. 1) is output at this time. In effect, we are
solving (4.22) backwards in time from M in order to obtain the coordinate of S*.

Step 2. One then calls INPUFF again; this time using the original wind field. The
source is located at point S*. A single puff is released at t = ¢; and the run stops
at t = t,. In effect, we are solving (4.22) forward in time from ¢s to t,, starting
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from S* using the original wind field. We do this in order to compute the correct
values for o, and o,. The end of the path ends at some point M* (not pictured)
that is close to M, but not exactly, due to numerical errors in computing the
backward and forward paths. Suppose we call the resulting puff function centered

at M* by IlpSM(xayaZ;tsatm)'

Step 3. At the end of INPUFF run described in Step 2., the concentration computed
by the code at the point P* (shown in Fig. 4.1) at time ¢, is approximately equal
to the desired concentration due to a puff centered at P starting from z;. That
is,

Grsyszsts (xma Ym> Zm; tm) = 'wSM('TP* ,Yp+, 2px; ts, tM)- (4'23)
(Actually, instead of using M to compute the coordinates of P*, as shown in the

_),
figure, we should, instead, use M* computed from rp+ = rps« + r; where r; =S*S.)
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r; true puff center
N P
Q* t_tm ® P*
approx. puff center
1=t
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m

Figure 4.1. First, INPUFF is run from ¢ = ¢,, to t; starting at M in the reversed wind
field. Then, INPUFF is run from t = ¢, to %,, starting from S*. The puff evaluated at
t = t,, at P* is approximately the same as the desired concentration one would get from
the puff at P. In fact, it is exactly the same if the wind field is such that the streak-lines
from S to P and S* to M are parallel, ignoring any numerical errors in path integration.

A. Appendix: Derivation of the Adjoint to the Advection-Dispersion
Equation

We define the space-time inner product < ., . > by

[e.e]
< byt >= / / b(x, ) (x, ) dxdt. (A1)
—00 JQ
In this section, we only consider functions ¢(x) that satisfy the following conditions:
7:lgrolo Q(;S(x )2 dx = t—l)lmoo/ B(x,t)?dx = 0, (A.2)

d(x, 1) =0, x € 99, Vt. (A.3)
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Operator Adjoint Corresponding Identity

o> fé | fY M) <4, fop>=<fh,¢>

¢ — 0pJot | Y — =0y /ot | (12) <,0¢/0t >= < -0y /0t,d >
u—V-u |- -Vy (I3) <9, V-u>=<-Vipu>

¢ — Vo u——-V-u (14) <u,Vgp>=<-V-u,¢>

Table A.1. Relevant operators and their adjoints.

For vector-valued functions u(x,t) and w(x,t) we define the inner product by
<u,w >_/ / (x,t) - w(x,t) dxdt. (A.4)

However, we do not require the vector-valued functions to satisfy conditions of the type
(A.2) and (A.3).
Given a linear operator O its adjoint O is defined to be the operator such that

<Op, i >=< ¢,O%p > . (A.5)

Or, for an operator A that maps real-valued to vector-valued functions, its adjoint .A?
must map vector-valued to real-valued functions and is defined such that it satisfies

< Ap,u >=< ¢, Alu > . (A.6)

For an operator B that maps vector-valued to real-valued functions, its adjoint B! must
map real-valued to vector-valued functions and must satisfy

< Bu,¢ >=<u,Bl¢ > . (A.7)

Table A.1 shows some relevant operators and their adjoints. Also, shown are the
corresponding identities from which the adjoint is derived. We will now prove the
identities in this table.

The first identity (I1) in the Table is obvious. The second identity (I2) follows from
performing the following integration by parts:

<¢,%> = /Oo/zp@dxdt
:/ / Wsddt—/ / %, s
A Wd"]t__oo [ [ Groa (A8)
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The magnitude of the first integral on the last r.h.s. equation is bounded above by the

Cauchy-Schwarz inequality:
1/2
‘/ P dx| < (/ '¢2dx/ ¢2dx) ) (A.9)
Q Q Q

From (A.2), the two integrals on the r.h.s. of the inequality both go to zero as t— — oo
and ¢t — oo. Hence, the integral on the r.h.s. of (A.8) vanishes and we have

b _ _ [ [ W __ %
<¢’E>_ [m/§28t¢dxdt_< 6t’¢>' (A.10)

To prove identity (I3) in Table A.1, we have

<P Veu> =/ /¢v-udxdt
—00 JQ

_ /O:O/QV.(W)dxdt—/o:o/ﬂu-vquxdt. (A.11)

From the divergence theorem, the above equation becomes

<P Vou> = /o:o/m(zpu)-ndet—/o:o/Qu-dexdt. (A.12)

From condition (A.3) we have that 1 vanishes on the boundary 09 so that the first
integral on the r.h.s. vanishes, and identity (I3) immediately follows.

Identity (I4) immediately follows from (I3) and using the commutativity of the inner
product <., .>.

The operator for advection-dispersion is

Llc(x,t)] = acg;’ t

We shall assume that the flow is incompressible; that is,

+ A(x, t,v)e(x, 1) + V- [e(x, t)v(x, t)] — V - k(x,t,v)Ve(x, t). (A.13)

V-v(x,t) =0. (A.14)

To find the adjoint of £, we take the adjoint of each of the above terms in the r.h.s.
of (A.13) by using primarily the results in Table A.1.

In particular, from (I2) the first term on the r.h.s. (A.13), upon taking its adjoint,
becomes —0dc(x, t)/0t.

From (I1), the adjoint of the second term is A(x,t)c(x,t), which is left unchanged.
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The adjoint of the third term (advective term) in (A.13) is derived using the incom-
pressibility assumption (A.14) and applying (I14). We have

<P, V-(pv) > = <9hp,v-Vop >+ <9, ¢V -v >
= <,v-V¢ >
= <yv,V¢ >
= <=V-(v),¢>. (A.15)

Thus, the adjoint of the advection operator is its negation.
The adjoint of the last term (dispersion term), is obtained by the following identity:

<=1, V-kVp > = < Vi),kVep >
= <kVy,V¢ >
= < -=V-kVy,¢ >, (A.16)

where we used the fact that the dispersion tensor k is symmetric. Thus, the adjoint of
the dispersion operator is itself; i.e., it is self-adjoint.
Thus, the adjoint of L is finally given by

Lle(x,1)] = —W + A(x, t,v)e(x, 1) — V- [e(x, t)v(x, )] = V- k(x, £, v)Ve(x, t). (A.17)

B. Appendix: Derivation of the Reciprocity Relationship for the Green’s
Function

The Green’s function gy (x,t) satisfies the problem:
ng’t’ (Xa t) = 6x’t’ (Xa t)' (Bl)

Here, 0,4 (x,t) denotes the delta function centered at z = X’ occurring at time ¢t = t'.
The adjoint, or reciprocal, Green’s function hyry(x,t) satisfies the adjoint problem:

Lt Ryrron (X, t) = Oymynt (X, t). (B2)
Using the inner product defined in (A.1), it immediately follows that

< hx”t”aﬁgxlt’ > = K hx”t”a(sx’t’ >
[e's)
= / / hxutu (X, t)éxzt: (X, t) dxdt
—00 JQ
= Ay (X,, tl) . (B.3)
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From the definition of the adjoint operator, the above inner product can also be ex-
pressed as
< hxllt//,ﬁgxltl > = K /Cthx”t”agx’t’ >
= < 6X//tl/,gxlt/ >
o
= / / Oxrrgn (X, 1) gy (X, t) dxdt
—00 JQ
= gy (X",t”). (B.4)

Thus, by equating the last lines of (B.3) and (B.4), we have the law of reciprocity:

gx'y (XH, t”) = h,XHtH (XI, t,) (B5)

C. Appendix: Derivation of the “Strong” Reciprocity Law in the Case
of Steady Wind Field and Transport Parameters

We assume that the wind field velocity, decay constant, and dispersion coefficient are
constant in time. That is,

v(x,t) =v(x),  A(x,tv(x,t)) = Ax,v(x)), k(x,t,v(x,t)) = k(x,v(x)). (C.1)

Moreover, we assume that the decay and dispersion coefficients do not depend on the
sign of the wind velocity. That is,

A(x,v) = A(x,—v),  k(x,v) = k(x, —v). (C.2)

Under these assumptions, the equation (2.18) defining the (forward) Green’s function
becomes

0 NG ,t
gtait(x) ‘I’ A(X7 V)gxltl (Xa t) + V . [gx’t’ (X, t)V(X)]

=V - k(x, V)V gy (%, ) = dyrpr (%, ). (C.3)

Because the coefficients A, v, and k in the equation are not functions of ¢, it can be
easily shown that if g,y (x,1) is a solution to this equation, then gy, (x,t+ 7) is also a
solution, for any constant 7. Thus, the Green’s function, in this case, only depends on
the difference ¢t — #'. Thus, we may simply express the Green’s function by g, (x,t — ),
or simply gy (x,t), instead of gy (x,t). Equation (C.3) becomes, for ¢ > 0,

agX’ (Xa t)

5 + )\(x’ v)gxl (X, t) + V- [gx’ (X’ t)V(X)]

—V - k(x,v)Vgy (x,2) = 6(x — x)d(t), (C.4)
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and condition (2.23) becomes, for ¢ <0,
ax (X, t) =0. (C5)

Note that ¢’ no longer appears in either of these equations.

By a similar argument, the reciprocal Green’s function only depends on the difference
t —t" so that we may write it as hy (x,t — t"), or simply hy»(x,t). Equation (2.22) for
the reciprocal Green’s function becomes, for ¢t < 0,

_ Ohyrr (x, 1)

a5 F A V) (5, 8) = V- e (x, D)V ()]

=V - k(x,v)Vhy (x,t) = 8(x — x")8(t), (C.6)

and, for ¢ > 0,
hy (x,t) = 0. (C.7)

Note that ¢ no longer appears in either of these equations.
In equation (C.6), let us reverse the time variable, that is, we make the substitution:

t— —t. (C.8)
The time-reversed reciprocal Green’s function is defined by
hi (%, t) = hyr (x, —t). (C.9)
We also define the reversed wind field by
vi(x) = —v(x). (C.10)
Then, making use of (C.2), equation (C.6) becomes, for ¢ > 0,

Oh%u(x,1t)

x!

LI NGV VB (1) + 9« [ (7 ()]

=V - k(x, V") Vhin(x,t) = 6(x — x")6(¢t), (C.11)
and condition (2.23) becomes, for ¢ < 0,
hiu (X, t) =0. (012)

It is important to note that, except for the reversal in wind field, equation (C.11) for
the reverse reciprocal Green’s function is exactly of the same form as (C.4) for the
forward Green’s function. Thus, hl,(x,t) is a “reversed wind-field” Green’s function

corresponding to g, (x,t). Note that in the main text we used the notation g instead of
h".
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From the reciprocity law given by (2.24), we note that
Gx! (X", ' — t') = gy (X",t”) = Py (X', tl) = hyn (Xl,t' - t”) = hyn (XI, ' — t'). (C.13)

Setting t = ¢/ — ', we then have the reciprocity law for the reversed reciprocal Green’s
function:

g (X", 1) = hln (X, 1). (C.14)

This identity states that the concentration c¢;(t) = g« (x”,t) at x = x” due to an impulse
source at x = x', ¢ = 0 with wind field v is equal to the concentration cz(t) = hL,(xX',t)
at x = x' due to an impulse source at x = x”, ¢ = 0 with reverse wind field —v. Of
course, this fact is subject to assumptions (C.1) through (C.2) being true.

Actually, this last condition (C.2) is not necessary as long as in (C.11) we replace
A(x,v") by A(x,v) and k(x,v") by k(x,v). Although in this case a physical interpretation
is missing, the reverse reciprocal Green’s function can still be computed using an ex-
iting advective dispersion computer code with proper adjustments to how A and k are

computed as functions of wind velocity.

D. Appendix: The Mathematical Form of LODI Solutions

Suppose we consider the ensemble of particles, all of whom start at a point x' and time
t', and whose paths obey the random process:

dX(t) = a(X(t),t,t — t')dt + b(X(t),t,t — t') + dW, (D.1)

where X(t) is random vector in R? for the particle position at time ¢t and W denotes the
Wiener process. The functions a and b are defined by

a(x,t,t —t') = v(x,t) + V - k(x, t,t — t'), (D.2)

%b(x,t,t —tbl(x,t,t —t') = k(x, t,t — t). (D.3)

The probability density function for the particle position distribution at time ¢ will
be denoted as gy (x,t). Since t' may be considered as fixed, gy (x,t) can be shown to
satisfy the following PDE

8gx’t’ (Xa t)

5 + V- [v(x, ) gwrgr (x,8)] = Vo k(x, 8, — ') Vg (x,1) = §(x —x')d(t —t'). (D.4)

To solve a problem with a general source term function s(x/,#'), LODI generates
an ensemble of particles starting from various values of x' and ¢’ over which s(x,#')
is defined, with the number of particles generated proportional to s(x',t'). We may
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discretize the source over space-time voxels, so that the particles populations are subdi-
vided into subpopulations that begin in some voxel Uy » centered at x/, ¢'. As the source
discretization becomes finer and finer and the number of particles is correspondingly in-
creased (so that there is a sufficient number of particles generated at each voxel), each
subpopulation generated at Uy p will be samples from a probability distribution whose
density approaches the g,y (x,t) defined above.

Because the particles are statistically independent, the density of all of the particles
will be the superposition of the g,y (x,t) with coefficient equal to the source strength at
X', t'. Hence, the concentration as computed by LODI, in the limit of an infinite number
of particles, for a piecewise-constant point source is given by

C(Xa t) = z gx’t;. (Xa t)s(t;')At_lja (D5)
j,t3.<t

where ¢ is the time of the j-th packet release (with ¢ < t) and x' is the location of
the point source. For a continuous source s(x',t') the concentration solved by LODI is
given by

e(x, 1) = /0 t /Q G (x, )5 (<, ') dxdt'. (D.6)

E. Appendix: Reciprocity Law for Basis Functions of Advection-Dispersion
Equations with Memory
Define the inner product:

< B, 1), h(x, 1) >= /Q /_ O:O S(x, 1)1h(x, 1) didx. (E.1)

We multiply both sides of (3.7) by gw (x,t) and integrate with respect to x and ¢, to
obtain

ahx”t”t’ (X7 t)
~(ger 1), T2 — (g (3, 8), V- lerne (3, Ov(x,1)])
_<gx’t’ (Xa t)a V. k(Xa t,t— tl)Vh’X”t”t’ (Xa t)> = gx'¢' (X”, t”)' (EQ)

Using the incompressibility assumption:
V -v(x,t) =0, (E.3)

and the various identities one has

8 !t X,t
<g?587t()’ By (X, t)> + <V : [gX’t’ (Xa t)V(X’ t)]’ horiny (X’ t)>

—<V : k(X, t, t— t')VgX/t/ (X, t), h’x”t”t’ (X, t)> = gx'¢ (X”, t”). (E4)



Now, by using (3.4), we have that

gy (X 1) = g (X", "), t" < t".
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(E.5)



